

(source: Pará), *Vatairea macrocarpa* (Benth.) Ducke (Minas Gerais), *Vatairea paraensis* Ducke (Pará), *Vatairea sericea* Ducke (Pará), *Vataireopsis araroba* (Aguilar) Ducke (Espírito Santo), *Vataireopsis speciosa* Ducke (Amazonas) and *Vataireopsis pallidiflora* Rizz. (Goiás). Small, mostly heartwood, fragments were secured by courtesy of the botanist A. de Mattos. TLC (SiO_2 , C_6H_6 -AcOEt-MeOH 72:25:3) examination of their C_6H_6 extracts failed to reveal the presence of chrysophanol only in the extract from *V. pallidiflora*, prepared from a softwood sample.

Acknowledgements—The MS were registered by Dr. C. H. Williams Jr. through the courtesy of Dr. J. de Paiva Campello, Universidade Estadual de Campinas.

REFERENCES

1. Braz Filho, R., Gottlieb, O. R. and Mourão, A. P. (1975) *Phytochemistry* **14**, 261.
2. Ducke, A. (1949) *As Leguminosas da Amazônia Brasileira* 2nd Edn., Boletim Técnico do Instituto Agronômico do Norte, No. 18, Belém.
3. Harper, S. H., Kemp, A. D. and Underwood, W. G. E. (1965) *Chem. Commun.* 309.
4. Donnelly, D. M. X. and Fitzgerald, M. A. (1971) *Phytochemistry* **10**, 3147.
5. Adityachaudhury, N. and Gupta, P. K. (1973) *Phytochemistry* **12**, 425.
6. Ollis, W. D. (1968) in *Recent Advances in Phytochemistry* (Mabry, T. J., Alston, R. E. and Runeckles, V. C., eds.), Vol. 1, p. 329. Appleton-Century-Crofts, New York.
7. Braga de Oliveira, A., Gottlieb, O. R. and Ollis, W. D. (1971) *Phytochemistry* **10**, 1863.
8. Magalhães Alves, H., Arndt, V. H., Ollis, W. D., Eyton, W. B., Gottlieb, O. R. and Taveira Magalhães, M. (1966) *Phytochemistry* **5**, 1327.
9. Braga de Oliveira, A., Fonseca e Silva, L. G. and Gottlieb, O. R. (1972) *Phytochemistry* **11**, 3515.

Phytochemistry, 1975, Vol. 14, pp. 829-830. Pergamon Press. Printed in England.

SITOSTEROL- β -D-GALACTOSIDE FROM *HIBISCUS SABDARIFFA**

A. M. OSMAN, M. EL-GARBY YOUNES and A. MOKHTAR

Department of Chemistry, Faculty of Science, University of Assiut, Assiut, Egypt, A.R.E.

(Received 24 June 1974)

Key Word Index—*Hibiscus sabdariffa*; Malvaceae; karkade; sitosterol- β -D-galactoside.

Hibiscus sabdariffa (Malvaceae) or karkade is widely used in Egypt for curing heart and nerve diseases [1, 2]. Previously [3] we reported the isolation of a steroid compound of unknown structure from the leaves of this plant.

The neutral part of the non-volatile fraction of the Et_2O extract of defatted leaves deposited colourless rosettes which were recrystallised (3 \times CHCl_3) to yield sitosterol- β -D-galactoside, m.p. 275-277° (decomp.), $[\alpha]_D -63^\circ$ (in pyridine), ν_{max} 3450 cm^{-1} (b, OH), NMR (in deuterated pyridine) showed peaks at τ 4.68 (t, one olefinic H), τ at 6.29 (t, H α - to OH). Tetraacetate (needles, MeOH-CHCl_3), m.p. 149-151°, $[\alpha]_D -33.3^\circ$; MS; parent ion m/e 744 (agreeing with $\text{C}_{43}\text{H}_{68}\text{O}_{10}$); 331, 211, 229, 169 and 109 (characteristic for glycoside tetraacetates [4]); and at m/e 414 and m/e 396 (base peak), NMR showed sharp peaks at τ 7.9-8.0 (four

acetate groups), τ at 4.72 (t, one olefinic H). Tetrabenzoate (MeOH-CHCl_3), mp 196-198°, $[\alpha]_D +10.5^\circ$.

Acid hydrolysis [5] of the glycoside gave sitosterol (mp, mmp 132°, $[\alpha]_D -34^\circ$, IR, M^+ 414) plus galactose (R_f PC 0.12; $\text{BuOH-AcOH-H}_2\text{O}$, 4:1:2-2).

Sitosterol- β -D-galactoside was synthesized [6] from acetobromogalactose pentaacetate [7] and HBr gas in Ac_2O , to obtain a green gum which was dissolved in dry dioxane and added dropwise over 1 hr to a slurry in dioxane of sitosterol, Ag_2CO_3 and MgSO_4 . After 20 hr at room temp., the product was chromatographed over alumina to give sitosterol- β -D-galactoside tetraacetate identical in all respects (IR, mp, mmp and specific rotations) with the natural compound tetraacetate.

It is interesting to note that whereas sitosterol- β -D-glucoside has been isolated from several plant sources, this is the first report of the galactoside.

* Part XIII in a series. For Part XII see Ref. [8].

Acknowledgements—The authors would like to express their gratitude to Prof. J. McLean and Dr. Bladon of the Department of Chemistry, University of Strathclyde, Glasgow, C.1. Scotland for the NMR and MS measurements.

REFERENCES

1. Griebel, C. (1939) *Z. Untersuch. Lebensm.* **77**, 561.
2. Sharaf, A. (1962) *Planta Med.* **10**, 48.
3. Osman, A. M., El-Garby Younes, M. and Mokhtar, A. (1974) *Indian J. Chem.* submitted.
4. Personal communication, Professor J. McLean, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, Scotland.
5. Dugan, J. J., De Mayo, P. and Starratt, A. M. (1964) *Can. J. Chem.* **42**, 491.
6. Elderfield, R. C. (1947) *J. Am. Chem. Soc.* **69**, 2235.
7. Horning, E. C. (1955) *Organic Synthesis*, Vol. III, p. 11, New York.
8. Osman, A. M., El-Garby Younes, M. and Ata, F. M., 4th *Pharmaceutical Arab Congress*, Cairo, 29th October 1974 (in press); (1974) *Egypt. J. Chem.* submitted.

Phytochemistry, 1975, Vol. 14, pp. 830-832. Pergamon Press. Printed in England.

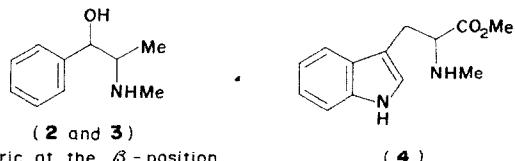
ALKALOIDS OF *SIDA CORDIFOLIA**[†]

SHIBNATH GHOSAL, RAMA BALLAV P. S. CHAUHAN and
RAKESH MEHTA

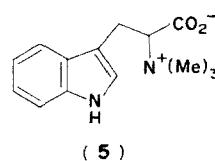
Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutics,
Banaras Hindu University, Varanasi-5, India

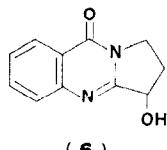
(Received 10 September 1974)

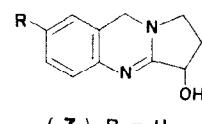
Key Word Index—*Sida cordifolia*; Malvaceae; β -phenethylamines; carboxylated tryptamines; quinazoline alkaloids; β -phenethylamine; ephedrine; ψ -ephedrine; *S*-(+)-*N*_b-methyltryptophan methyl ester; hypaphorine; vasicinone; vasicine; vasicinol; sympathomimetic amines; bronchodilator principle.


Sida cordifolia L. (Malvaceae) is distributed along with other species of this genus throughout the tropical and sub-tropical plains of India. Extracts of different parts of the plant are reported to be used in the Ayurvedic system of medicine for a variety of purposes [1]. Ghosh and Dutta previously isolated [2] ephedrine and ψ -ephedrine from the aerial parts of this plant, while Dutta reported [3] the presence of appreciable quantities of H_2O -soluble alkaloids but could not isolate them. Reports on nitrogenous constituents of this family of over 700 species are very few. *Gossypium* is the only other genus where the presence of two biogenic amines, viz. 5-hydroxytryptamine [4], and histamine [5] has been reported. No true alkaloids have been previously described in the malvaceae.

From the roots of this plant, we have now isolated three β -phenethylamines, viz. β -phenethylamine (1), ephedrine (2), and ψ -ephedrine (3), 2 carboxylated tryptamines, *S*-(+)-*N*_b-methyltrypto-


phan methyl ester (4) and hypaphorine (5), and three quinazoline alkaloids, vasicinone (6), vasicine (7) and vasicinol (8). In addition, liberal amounts of choline and betaine have been obtained from the H_2O -soluble alkaloid fraction.


epimeric at the β -position


(4)

(5)

(6)

(7) R = H

(8) R = OH

* Part I in the projected series "Chemical Constituents of Malvaceae".